The Future of Medicine – Technology & the Role of the Doctor in 2025 – a brief summary

The following is a brief summary of a joint Royal Society of Medicine/Institute of Engineering & Technology event held at the Academy of Medical Sciences on 6th May. The event was organised, extremely professionally, by the IET events team. The last ticket was sold half an hour before the start, so it was a genuine sell-out.

The speakers for the event were jointly chosen by this editor and by Prof Bill Nailon, who leads the Radiotherapy Physics, Image Analysis and Cancer Informatics Group at the Department of Oncology Physics, Edinburgh and is also a practising radiological consultant. As more of those invited by Prof Nailon were available than those invited by this editor, the day naturally ended up with a strong focus on advances in the many aspects of radiology as applied to imaging & treating cancer, as a surrogate for the wider examination of how medicine is changing.

The event began with a talk by Prof Ian Kunkler, Consultant Clinical Oncologist & Professor in Clinical Oncology at the Edinburgh Cancer research Centre. Prof Kunkler began by evidencing his statement that radiotherapy delivers a 50% reduction in breast cancer reappearance, compared with surgery alone. He stressed the importance of careful targeting of tumours with radiotherapy – not an easy task, especially if the patient is unavoidably moving (eg breathing) – Cyberknife enables much more precise targeting of tumours as it compensates for such movement. Apparently studies have shown that 55% of cancer patients will require radiotherapy at some point in their illness.

This was followed by Prof Joachim Gross, Chair of Systems Neuroscience, Acting Director of the Centre for Cognitive Neuroimaging & Wellcome Trust Senior Investigator, University of Glasgow, talking about magnetoencephalopathy (MEG), which enables excellent spatial & temporal resolution of the brain. However it currently uses superconducting magnets that in turn require liquid helium, so is very expensive to run. He then showed an atomic magnetometer which apparently is developing fast and will be a much cheaper alternative to MEG – he expects people will be able to wear sensors embedded in a cap soon. He then went on to show truly excellent graphics on decoding brain signals with incredible precision; he explained that the 2025 challenge is understanding how the different brain areas interact. Finally he described neurostimulation, using an alternating magnetic field with the same frequency as brain waves to change behaviour; whence the emergence of neuromodulation as a new therapy. Both exciting, and just a little scary.

Dr David Clifton, Lecturer, Dept of Engineering Science & Computational Informatics Group, University of Oxford, followed with a talk on real-time patient monitoring. He began by explaining the challenges that clinicians face with this wall of patient data coming towards them: only “big data in healthcare” enables all the data generated by patients to be analysed to identify the early warning signals that are so important to minimise death and maximise recovery. (more…)