[grow_thumb image=”https://telecareaware.com/wp-content/uploads/2016/11/Stamford-stretchy-sensor.jpg” thumb_width=”150″ /](Photo: Nature) Here’s a stretchy polymer with the right stuff for wearables. It can stretch, wrinkle and heal like skin. It can be ‘healed’ if damaged. Most of all, according to the
Chemical & Engineering News article summarizing the
Nature letter (PDF link) authored by the Stanford University team, it “has an electronic performance on par with amorphous silicon, the material that’s used in transistor arrays that control liquid-crystal display pixels. And it maintains that electrical performance even when stretched to double its original size.” We have been following stretchy sensors for some years, highlighting the pioneering work of John Rogers, a materials scientist at the University of Illinois, Urbana-Champaign and his team, whose work has been commercially marketed through
MC10 [our back file here], but the difference here is the process. Rogers and others have been meticulously building rigid sensors onto a rubbery material that has some ‘give’. In Rogers’ words, “Stretchy mechanics and efficient charge transport typically do not go together.” Bao’s group has developed “clever chemistries that seem to capture both properties in a single material.” Early days still, but tremendous potential in healthcare wearables for those who truly understand the technical aspects of this and develop accordingly.
Hat tip to Jerry Kolosky of Panasonic via LinkedIn
Most Recent Comments